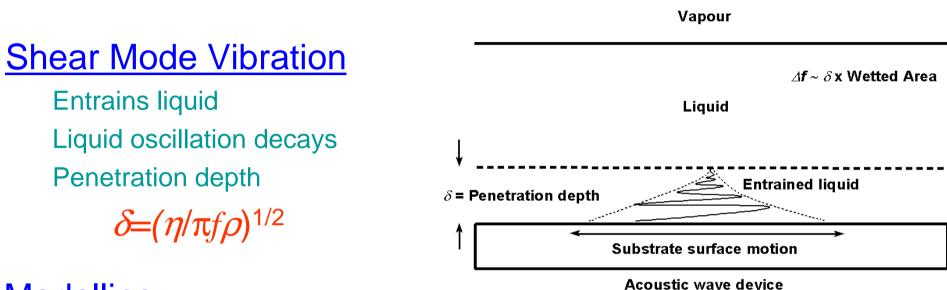


Hydrophobic Effects and Acoustic Wave Response

Glen McHale Nottingham Trent University Nottingham NG11 8NS, UK

Overview

1. Ideas


- Contact angles and cavity lengths
- Molecular slip
- Surface structure
- Diffuse boundaries
- 2. Models & Interpretations
 - Effective acoustic interface
 - Sauerbrey "liquid mass"
 - Acoustic reflections
- 3. Experiments & Results
 - QCR surfaces with pillars
 - Pillars and hydrophobicity

Hydrophobic Effects

Key Ideas

Liquids Response and Modelling

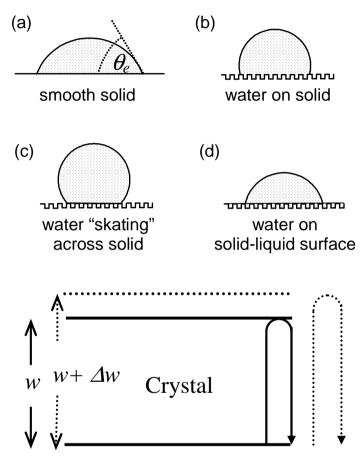
Modelling

Navier-stokes equations in liquid (or equivalent ones if a polymer) Wave equations in solid Vanishing stress at liquid surface Match speeds at solid-liquid boundary

Assumes i) matching of speeds at <u>physical location</u> of boundary

and *ii) <u>uniform</u> solid-liquid boundary*

Contact Angles and Cavity Lengths


Contact Angle

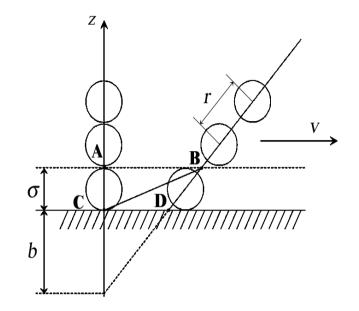
Indicates relative interfacial energies Ability to penetrate surface features

QCM as standing wave cavity with $w = \lambda/2$ Added mass moves effective boundary Added liquid moves effective boundary by ~ penetration depth

Sauerbrey and Kanazawa-Gordon Eqns follow

Effective cavity smaller \Rightarrow *higher frequency*

Effective cavity larger \Rightarrow *lower frequency*


Potential Problems 1 – Molecular Slip

Molecular Slip

Surface mobility is different to bulk Blake-Tolstoi theory Surface-to-bulk mobility

$$\frac{u_s}{u} = \exp\left[\alpha A \gamma^{LV} \left(1 - \cos\theta\right)/kT\right]$$

Dependence on contact angle Slip length *b*

$$b = r \left(\exp \left[\alpha A \gamma^{LV} \left(1 - \cos \theta \right) / kT \right] - 1 \right)$$

Wetting Case $\theta = 0^{\circ}$

Bulk and surface mobility's identical Slip length vanishes Friction coefficient $k=\eta_t/b$ infinite Non-Wetting Case θ=180^ο

Surface mobility exponentially large Slip length exists

Friction coefficient $k = \eta_f / b$ reduces

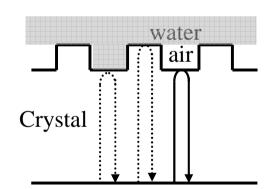
J.S. Ellis, G. McHale, G.L. Hayward & M. Thompson, J APPL PHYS <u>94</u> 6201-6207 (2003)

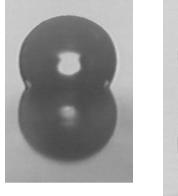
Potential Problems 2 – Surface Structure

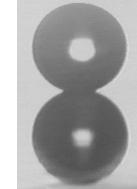
Capillary Penetration

- Liquid skates across solid surface Same hydrophobicity Different surface structure
- Super-hydrophobic effect

Laterally Dependent Acoustic Reflectivity


Multiple cavity lengths Varying strength of reflection Change in position of effective acoustic interface


Wetting Case $\theta = 0^{\circ}$


Reflectivity's at all places equivalent Effective cavity length is an average Defines slip length b=0

Non-Wetting Case θ=180^ο

Incomplete liquid penetration Reflectivity changes effective cavity Slip length *b* exists

Potential Problems 3 – Diffuse Boundary

Hard Solid-Liquid Interface

Boundary is well-defined so no problems

Examples: QCM as film thickness monitor in vacuum chamber QCM as viscosity-density sensor in Newtonian liquid QCM for mass deposition in liquid

Soft Boundary

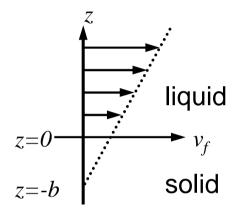
"Dressed surface"

Example: Surfaces with anchored chains Vesicles - "Bags of water" in water

Porous-Hard Boundary

Example: Super-fluid resonator cavity with sintered boundary linings

Issue: Effective acoustic interface <u>versus</u> physical boundary


Hydrophobic Effects

Models & Interpretations

Mathematical Formulation of Wall Slip

Flow Profile

With Slip length

Slip length, *b*, models effective position of interface Negative *b*, effective interface moves to liquid side of boundary

Equations

Match speeds

$$v_s(z=0) = v_f(z=-b)$$

Expand

$$v_w - v_f (z = 0) = -b \left(\frac{\partial v_f}{\partial z}\right)_{z=0}$$

Force exerted on wall

divided by viscosity

Slip Length

Mechanism for modelling an effective average boundary

and/or taking into account liquid-solid interfacial forces

G. McHale, R. Lücklum, M.I. Newton, *et al.*, J APPL PHYS <u>88</u>, 7304-7312 (2000) G. McHale & M.I. Newton, J APPL PHYS <u>95</u> 373-380 (2004)

Slip and Effective Sauerbrey "Liquid Mass"

Equations of Motion

Solve with slip boundary condition¹ Consider in terms of slip length² and interpret solution for small b

Newtonian Liquid

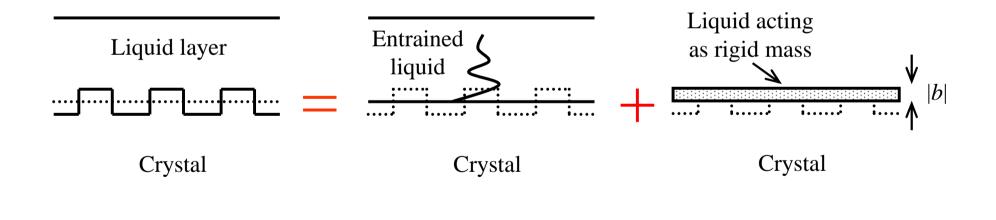
Kanazawa & Gordon result for no-slip modified by "slip" correction using b/δ

$$\left(\frac{\Delta\omega}{\omega}\right)_{slip} \approx \left(\frac{\Delta\omega}{\omega}\right)_{no \ slip} \left(1 - \frac{2b}{\delta}\right)$$

Slip length to penetration depth ratio

Negative Slip Length

Define a liquid mass as $\Delta m_f = b \rho_f$


$$\left(\frac{\Delta\omega}{\omega}\right)_{additional} \approx \left(-\frac{2b}{\delta}\right) \left(\frac{\Delta\omega}{\omega}\right)_{no\ slip} = \frac{\omega \Delta m_f}{\pi \sqrt{\mu_s \rho_s}}$$

Sauerbrey result for additional trapped "rigid liquid mass"

¹G. McHale, R. Lücklum, M.I. Newton, *et al.*, J APPL PHYS <u>88</u>, 7304-7312 (2000) ²G. McHale & M.I. Newton, J APPL PHYS <u>95</u> 373-380 (2004)


Pictorial Interpretation

Negative Slip Length

Acoustic Reflection View

Substrate Supports Standing Waves

Cavity length increases \Rightarrow *additional frequency decrease*

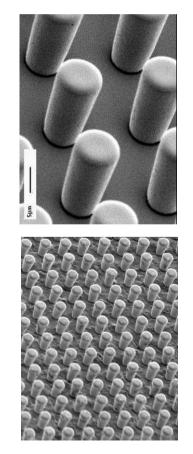
Limitations on "Slip" B.C./Trapped Mass View

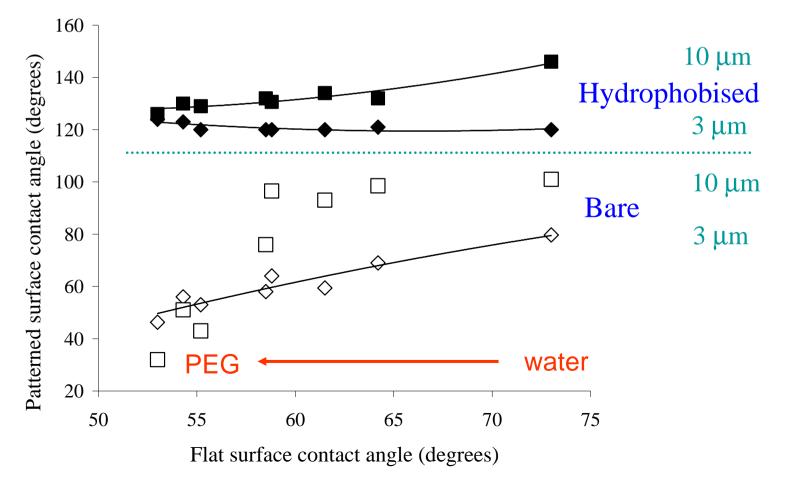
Effectively assuming equal reflectivity at peaks and troughs of topography

Cannot necessarily use additivity of liquid entrainment + trapped mass when incomplete liquid penetration occurs

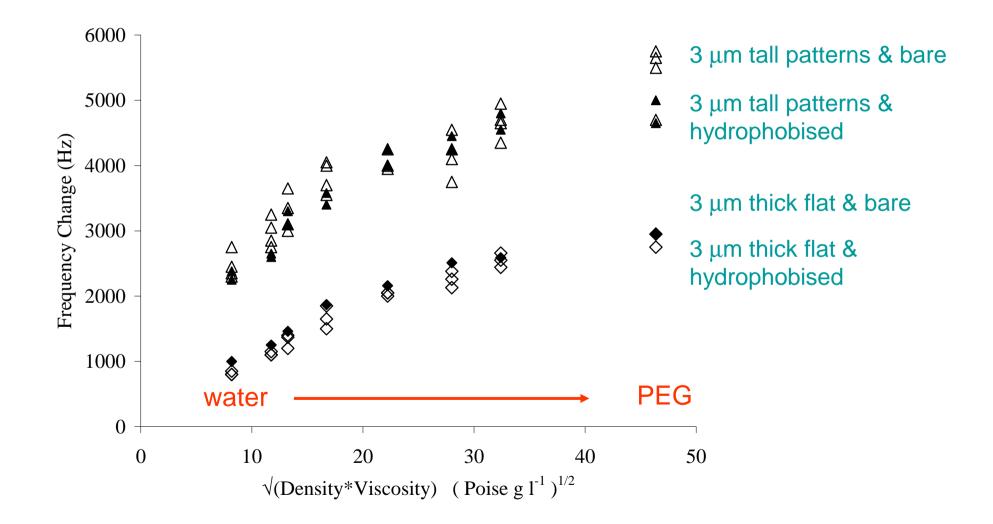
Hydrophobic Effects

Experiments & Results

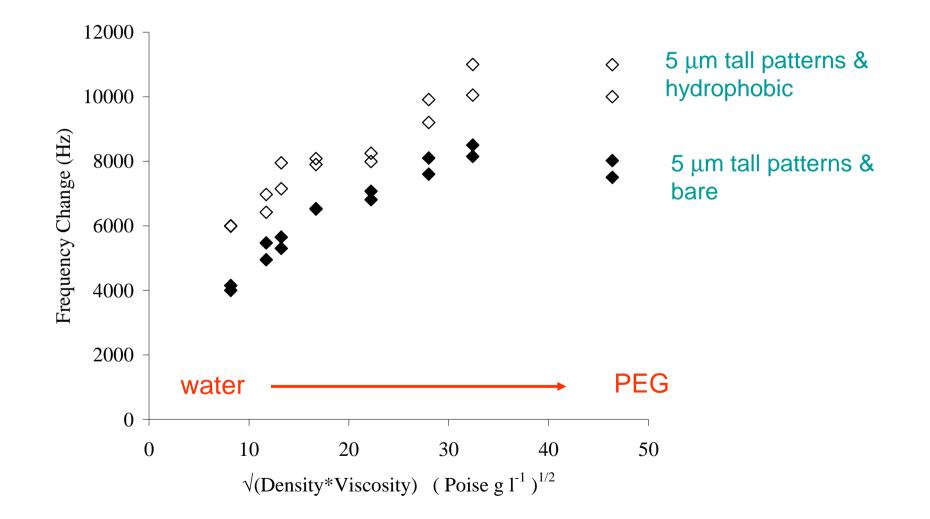

Super-Hydrophobic Crystals

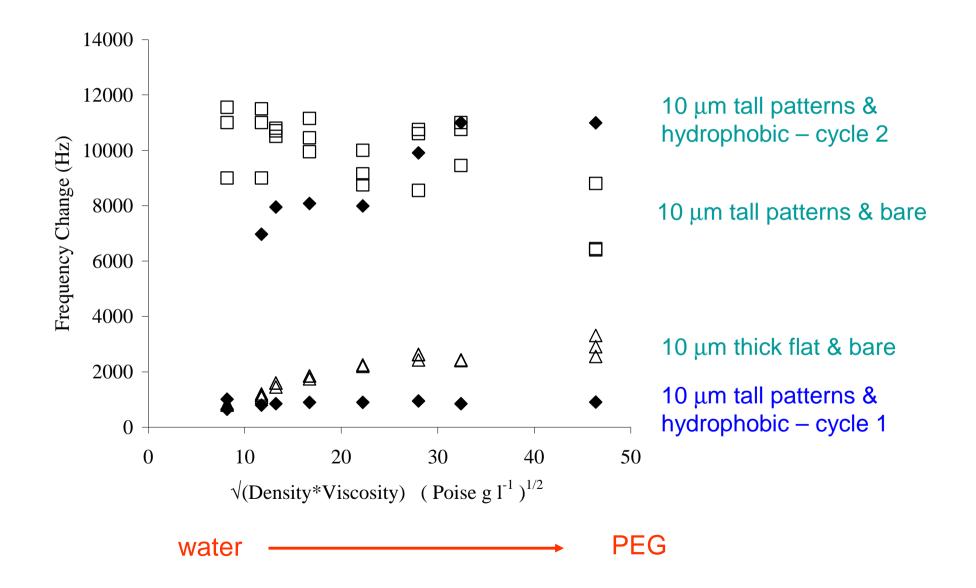

Patterned Crystals

SU-8 patterns on 5 MHz quartz crystals Pillars of 5 μ m diameter, 10 μ m cnt-cnt Heights of 3 μ m to 10 μ m


Preliminary Experiments

Flat and patterned layers Bare (70-80°) & hydrophobised (110-120°) 3350 MW PEG solutions 678-20000 mPa s




Low Pillar Height QCR Frequency Decrease

Medium Pillar Height Hydrophobic Dependence

Tall Pillar Height Hydrophobic Dependence

<u>Acknowledgements</u>

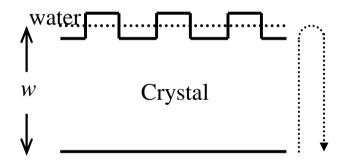
- Mike Thompson, Gordon Hayward and Jon Ellis Wetting/Super-hydrophobic QCM, slip and diffuse interface concepts Matching slip length to slip parameter in boundary condition
- Richard Cernosek and Lisa Thiesen
 - Air trapping and wetting
- Ralf Lücklum

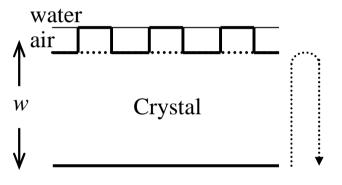
Slip parameter in boundary condition and wetting concepts

• Mike Newton, Carl Evans and Neil Shirtcliffe

Super-hydrophobicity

Key References


- G. McHale & M.I. Newton, Surface roughness and interfacial slip boundary condition for quartz crystal microbalances, J APPL PHYS <u>95</u> 373-380 (2004)
- J.S. Ellis, G. McHale, G.L. Hayward & M. Thompson, *Contact angle-based predictive model for slip at the solid-liquid interface of a transverse-shear mode acoustic wave device*, J APPL PHYS <u>94</u> 6201-6207 (2003)
- G. McHale, R. Lücklum, M.I. Newton, et al., Influence of viscoelasticity and interfacial slip on acoustic wave sensors, J APPL PHYS <u>88</u>, 7304-7312 (2000)


The End

Order of Magnitude Estimates – QCMs

Is Positive Δf Possible?

Possibly, if effective cavity length decreases due to changes in reflectivity Incomplete liquid penetration <u>versus</u> liquid penetration?

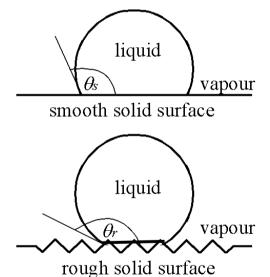
Effective QCM Cavity Lengths, w

$$v = f\lambda \implies \Delta w/w = -\Delta f/f$$

(v approx constant)

$f = 5 \text{ MHz}$ and $w = 330 \mu\text{m}$	
Δw	Δf
100 Å	150 Hz
100 nm	1.5 kHz
1 µm	15 kHz
10 µm	150 kHz

Super-Hydrophobic Surfaces


Contact Angle

Side view images of droplet Identical chemical functionality Different topography

Physical Cause

Surface roughness/ topography Incomplete liquid penetration (or) Greater solid-liquid interfacial area

New Sensor Principle

Change hydrophobicity to cause super-hydrophobic transition Response of QCM/SAW may alter by far more than due to mass change